
Module 1: Introduction to Computer Systems and 
Performance 
Module Objective: This module introduces the fundamental concepts of computer 
organization, detailing the basic structure and functional units that constitute a computer 
system. It also lays the groundwork for understanding software's role in hardware interaction 
and introduces the critical concept of performance measurement in computing. 

1.1 Basic Structure of Computers 

At its core, a computer is a sophisticated electronic device meticulously designed to perform 
computation and data manipulation through the execution of stored instructions. 
Understanding its fundamental structure is the first step toward comprehending how these 
complex machines operate. 

● Definition of a Computer System: Hardware, Software, Firmware. 
A complete computer system is not merely a collection of electronic components, but 
a tightly integrated ecosystem where distinct layers work in concert: 

1. Hardware: This refers to all the tangible, physical components that make up 
the computer. This includes the intricate electronic circuits, semiconductor 
chips (like the CPU and memory), printed circuit boards, connecting wires, 
power supply units, various storage devices, and all input/output (I/O) 
peripherals (keyboards, monitors, network cards, etc.). Hardware provides the 
raw computational power and the physical pathways for information. 

2. Software: In contrast to hardware, software is intangible. It is the organized 
set of instructions, or programs, that dictates to the hardware what tasks to 
perform and how to execute them. Software can range from low-level 
commands that directly interact with hardware to complex applications that 
users interact with. It is loaded into memory and processed by the CPU. 

3. Firmware: Positioned at the intersection of hardware and software, firmware 
is a special class of software permanently encoded into hardware devices, 
typically on Read-Only Memory (ROM) chips. It provides the essential, 
low-level control needed for the device's specific hardware components to 
function correctly, acting as an initial bridge between the raw hardware and 
higher-level software. A common example is the Basic Input/Output System 
(BIOS) in personal computers, which initializes the system components when 
the computer starts up. Without firmware, the hardware would be inert. 

● Evolution of Computers: Generations and Key Architectural Advancements. 
Computer architecture has undergone profound transformations, often categorized 
into "generations" based on the prevailing technological breakthroughs and the 
resultant shifts in design paradigms and capabilities: 

1. First Generation (circa 1940s-1950s - Vacuum Tubes): These pioneering 
computers, such as ENIAC and UNIVAC, relied on vacuum tubes for their 
core logic and memory. They were colossal in size, consumed immense 
amounts of electricity, generated considerable heat, and were notoriously 
unreliable. Programming was done directly in machine language or via 
physical wiring. The pivotal architectural advancement was the 
stored-program concept, which allowed programs to be loaded into 



memory, making computers far more flexible and programmable than 
previous fixed-function machines. 

2. Second Generation (circa 1950s-1960s - Transistors): The invention of the 
transistor was revolutionary. Transistors were significantly smaller, faster, 
more reliable, and consumed far less power than vacuum tubes. This led to 
more compact, dependable, and commercially viable computers. Magnetic 
core memory became prevalent. Crucially, the development of high-level 
programming languages (like FORTRAN and COBOL) and their respective 
compilers began to abstract away the direct manipulation of machine code, 
making programming more accessible. 

3. Third Generation (circa 1960s-1970s - Integrated Circuits (ICs)): The 
integration of multiple transistors and other electronic components onto a 
single silicon chip (the Integrated Circuit) marked a dramatic leap. This 
allowed for unprecedented miniaturization, increased processing speeds, and 
reduced manufacturing costs. This era saw the emergence of more 
sophisticated operating systems capable of multiprogramming (running 
multiple programs concurrently) and time-sharing, enabling shared access to 
powerful mainframes. 

4. Fourth Generation (circa 1970s-Present - Microprocessors): The 
invention of the microprocessor, which integrated the entire Central 
Processing Unit (CPU) onto a single silicon chip, revolutionized computing. 
This led directly to the proliferation of personal computers, powerful 
workstations, and the rapid expansion of computer networking. This 
generation also witnessed the rise of specialized processors and the early 
adoption of parallel processing techniques, as designers started hitting 
fundamental limits in single-processor performance improvements (like clock 
speed). 

5. Fifth Generation (Present and Beyond - Advanced Parallelism, AI, 
Quantum): This ongoing era focuses on highly parallel and distributed 
computing systems, artificial intelligence (AI), machine learning, natural 
language processing, and potentially quantum computing. Architectural 
advancements include multi-core processors, specialized AI accelerators, and 
highly complex memory hierarchies designed for massive data processing. 
The emphasis shifts from raw clock speed to maximizing throughput through 
parallel execution. 

● Components of a General-Purpose Computer: While architectures vary, a 
general-purpose computer consistently comprises three primary and interconnected 
functional blocks: 

1. Processor (Central Processing Unit - CPU): Often referred to as the 
"brain," the CPU is the active component responsible for executing all 
program instructions, performing arithmetic calculations (addition, 
subtraction), logical operations (comparisons, AND/OR/NOT), and managing 
the flow of data. It performs the actual "computing" work. 

2. Memory (Main Memory/RAM): This acts as the computer's temporary, 
high-speed workspace. It holds the program instructions that the CPU is 
currently executing and the data that those programs are actively using. 
Memory is characterized by its volatility, meaning its contents are lost when 



the power supply is removed. It provides the CPU with rapid access to 
necessary information. 

3. Input/Output (I/O) Devices: These components form the crucial interface 
between the computer and the external world. Input devices (e.g., keyboard, 
mouse, touchscreen, microphone) translate user actions or physical 
phenomena into digital signals that the computer can understand. Output 
devices (e.g., monitor, printer, speakers, robotic actuators) convert processed 
digital data from the computer into a form perceptible to humans or for 
controlling external machinery. 

● Stored Program Concept: Von Neumann Architecture vs. Harvard Architecture. 
The Stored Program Concept is the foundational principle of almost all modern 
computers. It dictates that both program instructions and the data that the program 
manipulates are stored together in the same main memory. The CPU can then fetch 
either instructions or data from this unified memory space. This radical idea, 
pioneered by John von Neumann, enables incredible flexibility: the same hardware 
can execute vastly different programs simply by loading new instructions into 
memory. 

1. Von Neumann Architecture: In this model, a single common bus (a set of 
wires) is used for both data transfers and instruction fetches. This means that 
the CPU cannot fetch an instruction and read/write data simultaneously; it 
must alternate between the two operations. This simplicity in design and 
control unit logic was a major advantage in early computers. While simple, the 
shared bus can become a bottleneck, often referred to as the "Von Neumann 
bottleneck," as the CPU must wait for memory operations to complete. 

2. Harvard Architecture: In contrast, the Harvard architecture features 
separate memory spaces and distinct buses for instructions and data. This 
allows the CPU to fetch an instruction and access data concurrently, 
potentially leading to faster execution, especially in pipelined processors 
where multiple stages of instruction execution can proceed in parallel. Many 
modern CPUs, while conceptually Von Neumann, implement a modified 
Harvard architecture internally by using separate instruction and data caches 
to achieve simultaneous access, even if the main memory is unified. 

● The Fetch-Decode-Execute Cycle: A High-Level Overview of Program Execution. 
This cycle represents the fundamental, iterative process by which a Central 
Processing Unit (CPU) carries out a program's instructions. It is the rhythmic 
heartbeat of a computer. 

1. Fetch: The CPU retrieves the next instruction that needs to be executed from 
main memory. The address of this instruction is held in a special CPU register 
called the Program Counter (PC). The instruction is then loaded into another 
CPU register, the Instruction Register (IR). The Control Unit (CU) 
orchestrates this transfer. 

2. Decode: The Control Unit (CU) takes the instruction currently held in the 
Instruction Register (IR) and interprets its meaning. It deciphers the operation 
code (opcode) to understand what action is required (e.g., addition, data 
movement, conditional jump) and identifies the operands (the data or memory 
addresses that the instruction will operate on). 

3. Execute: The Arithmetic Logic Unit (ALU), guided by the Control Unit, 
performs the actual operation specified by the decoded instruction. This could 



involve an arithmetic calculation, a logical comparison, a data shift, or a 
control flow change (like a jump). The result of the operation is produced. 

4. Store (or Write-back): The result generated during the Execute phase is 
written back to a designated location. This might be another CPU register for 
immediate use, a specific memory location, or an output device. 
Simultaneously, the Program Counter (PC) is updated to point to the address 
of the next instruction to be fetched, typically by incrementing it, or by loading 
a new address if the executed instruction was a branch or jump. The cycle 
then repeats continuously for the duration of the program. 

1.2 Functional Units of a Computer 

Beyond the high-level components, a computer system is a collection of several specialized 
functional units, each playing a distinct and crucial role in processing information. These 
units communicate via the interconnection structure. 

● Input Unit: 
○ Role: The input unit acts as a transducer and translator, converting 

information from the outside world into a machine-readable binary format that 
the computer's central processing unit can process. It handles user input, 
sensor data, or data from other systems. 

○ Process: It often involves physical interaction (e.g., key press), conversion of 
analog signals to digital (e.g., microphone), or direct digital reception. This 
digital data is then transferred to the CPU or memory. 

○ Examples: A keyboard translates key presses into character codes; a mouse 
translates physical movement into cursor coordinates; sensors convert 
physical quantities (temperature, pressure) into electrical signals, which are 
then digitized; a network card receives digital data packets. 

● Output Unit: 
○ Role: The output unit performs the inverse function of the input unit. It takes 

processed binary data from the computer's internal registers or memory and 
converts it into a form that is understandable to humans or usable by external 
devices. 

○ Process: This involves converting digital signals into visual displays, printed 
text, audio waves, or control signals for machinery. 

○ Examples: A display monitor converts pixel data into light; a printer converts 
text/image data into ink on paper; speakers convert digital audio signals into 
sound waves; actuators (e.g., motors, valves) in industrial control systems 
convert digital commands into physical motion or state changes. 

● Memory Unit: 
○ Role: The memory unit is the computer's storage facility, serving as a 

repository for both the instructions that constitute programs and the data that 
those programs manipulate. Its primary function is to store and retrieve 
information rapidly as directed by the CPU. 

○ Primary Memory (Main Memory / RAM - Random Access Memory): This 
is the computer's fast, working memory directly accessible by the CPU. It 
holds programs currently being executed and the active data they require. 
RAM is "random access" because any memory location can be accessed 



directly and quickly, regardless of its physical position. However, it is volatile, 
meaning all its contents are lost the moment power is removed. Its speed is 
crucial for CPU performance, as the CPU constantly fetches instructions and 
data from here. 

○ Secondary Memory (Auxiliary Storage): This type of memory is used for 
long-term, non-volatile storage of programs and data. It is significantly slower 
to access than primary memory but offers much larger storage capacities at a 
lower cost per bit. Data must be moved from secondary memory to primary 
memory before the CPU can process it. 

■ Examples: Hard Disk Drives (HDDs - magnetic storage), Solid State 
Drives (SSDs - flash-based electronic storage), USB flash drives, and 
optical discs (CDs, DVDs, Blu-rays). 

○ Data and Instruction Storage: A key aspect of the stored-program concept 
is that both the binary instructions of a program and the binary representation 
of the data it operates on reside together in the main memory, allowing the 
CPU to access them interchangeably via addresses. 

● Arithmetic Logic Unit (ALU): 
○ Role: The ALU is a fundamental digital circuit within the CPU that performs all 

the actual computational work. It is where arithmetic operations and logical 
operations are executed at the bit level. 

○ Arithmetic Operations: It can perform basic mathematical operations such 
as addition, subtraction, and often more complex ones like multiplication and 
division (though these might be broken down into simpler ALU operations 
over multiple clock cycles). 

○ Logical Operations: It performs bitwise logical operations like AND, OR, 
NOT, XOR, and bit shifting (moving bits left or right within a word) or rotation. 
These are essential for manipulating individual bits or flags and for 
comparisons. 

○ Output: Besides the computed result, the ALU also produces "status flags" 
(often stored in a Condition Code Register). These flags (e.g., Zero flag, 
Carry flag, Sign flag, Overflow flag) indicate specific characteristics of the 
operation's result, which are crucial for conditional branching in programs. 

● Control Unit (CU): 
○ Role: The Control Unit is the nerve center of the CPU. It is responsible for 

interpreting instructions and generating the necessary control signals to 
orchestrate all other functional units of the computer, ensuring that operations 
occur in the correct sequence and at the right time. It doesn't perform 
computations itself; rather, it directs who computes what and when. 

○ Functionality: It fetches instructions from memory, decodes them (interprets 
their meaning), and then generates precise timing signals and control signals. 
These signals activate specific data paths, tell the ALU which operation to 
perform, enable or disable registers, and control data transfers between 
various components (CPU, memory, I/O). It essentially manages the entire 
Fetch-Decode-Execute cycle. Its design can be complex, often implemented 
either as hardwired logic or through microprogramming (concepts explored in 
Module 5). 

● Processor (Central Processing Unit - CPU): 



○ Role: The CPU is the primary execution unit of the computer. It integrates the 
ALU and the Control Unit, along with a collection of high-speed internal 
storage locations called registers. Its fundamental purpose is to fetch, 
decode, and execute instructions from a stored program. 

○ Registers: These are small, extremely fast storage locations directly within 
the CPU. They are used to hold data, instructions, and addresses that are 
actively being processed, providing immediate access during execution 
without the need to go to slower main memory. Examples include the 
Program Counter (PC), Instruction Register (IR), Memory Address Register 
(MAR), Memory Data Register (MDR), and various General-Purpose 
Registers. 

● Interconnection Structure (Buses): 
○ Role: This refers to the system of pathways that connect all the major 

functional units of a computer (CPU, memory, I/O devices), enabling them to 
communicate and exchange information. These pathways are called buses, 
and they are essentially collections of electrical lines or wires. The number of 
lines in a bus (its "width") directly impacts how much information can be 
transferred simultaneously. 

○ Address Bus: This is a unidirectional bus that carries memory addresses or 
I/O port addresses from the CPU to memory or I/O devices. When the CPU 
wants to read from or write to a specific location, it places the address of that 
location onto the address bus. The width of the address bus determines the 
maximum amount of memory (addressable space) that the CPU can access. 

○ Data Bus: This is a bidirectional bus that carries the actual data being 
transferred between the CPU, memory, and I/O devices. When the CPU 
performs a read operation, data from memory or an I/O device is placed on 
the data bus to be sent to the CPU. When the CPU performs a write 
operation, data from the CPU is placed on the data bus to be sent to memory 
or an I/O device. The width of the data bus determines the amount of data 
transferred in a single operation (e.g., 8-bit, 16-bit, 32-bit, 64-bit). 

○ Control Bus: This is a bidirectional bus that carries control signals used to 
manage and coordinate operations among the various components. These 
signals dictate the timing and nature of transactions. 

■ Examples of Control Signals: Read/Write signals (indicating whether 
the CPU wants to read or write data), Clock signals (synchronizing 
operations), Interrupt request signals, Bus grant/request signals (for 
bus arbitration). The Control Unit generates many of these signals. 

○ Interaction: For example, to read data from memory, the CPU would place 
the memory address on the address bus, assert a "read" signal on the control 
bus, and then wait for the requested data to appear on the data bus. 

1.3 Software and Its Interaction with Hardware 

The sophisticated capabilities of a computer system arise from the seamless interplay 
between its hardware and various layers of software. Software dictates hardware's actions, 
while hardware provides the execution environment. 



● System Software: This foundational layer of software is designed to manage and 
control the computer hardware, providing an essential environment and platform for 
other software to run. It acts as an intermediary, abstracting the complexities of 
hardware from the end-user and application programs. 

○ Operating Systems (OS): The most critical piece of system software (e.g., 
Windows, Linux, macOS, Android). The OS manages the entire computer's 
resources, including the CPU's time (through scheduling processes), memory 
space (allocating and deallocating memory to programs), and I/O devices 
(managing device drivers). It also provides a consistent interface for 
application programs to interact with hardware and offers common services 
like file management and user authentication. The core part of the OS, which 
directly interacts with hardware, is called the kernel. 

○ Compilers: These are programs that translate source code written in a 
high-level programming language (e.g., C, C++, Java, Python) into machine 
code (binary instructions) or an intermediate form that the computer's 
processor can directly understand and execute. Compilers also perform 
various optimizations to make the generated machine code run faster or 
consume less memory. 

○ Assemblers: These programs translate source code written in assembly 
language (a low-level language that uses symbolic representations for 
machine instructions and memory locations) into executable machine code. 
Each assembly instruction typically corresponds directly to one machine 
instruction. 

○ Linkers: After individual program modules (source code files) are compiled or 
assembled into object files, a linker combines these object files with 
necessary library routines (pre-compiled code for common tasks) into a 
single, cohesive executable program. Linkers resolve references between 
different modules and ensure all parts of the program can find each other. 

○ Loaders: Once an executable program is created, the loader is a system 
program responsible for bringing that executable program from secondary 
storage (e.g., hard drive) into the main memory. It places the program's 
instructions and data into appropriate memory locations so that the CPU can 
begin executing them. It also handles relocation, adjusting addresses within 
the program if it's not loaded at a fixed memory location. 

● Application Software: This software category comprises programs designed for 
specific tasks or functionalities that directly benefit the end-user. It operates "on top 
of" the system software layer. 

○ Role: To enable users to perform a wide variety of specific tasks, enhancing 
productivity, facilitating communication, providing entertainment, or supporting 
specialized functions. 

○ Examples: Word processors for document creation, web browsers for 
internet access, video games for entertainment, spreadsheet programs for 
data analysis, and specialized software for engineering design or medical 
diagnostics. 

● Firmware: As previously mentioned, firmware is a hybrid of hardware and software. 
It is a set of instructions embedded directly onto a hardware device's non-volatile 
memory (e.g., ROM, Flash memory). It functions as the device's internal operating 
system. 



○ Role: Provides essential, low-level control for the hardware component, 
allowing it to perform its basic functions. It is crucial during the system's 
startup sequence (boot process) before the main operating system has 
loaded. Firmware updates are typically less frequent than software updates. 

○ Examples: The BIOS/UEFI on a motherboard (which initializes hardware 
components at boot-up), the control software within a hard drive, the 
operating system of a network router, or the internal programming of a smart 
appliance. 

● The Software Hierarchy: Abstraction Layers and Operating Modes. 
The interaction between hardware and software is structured in layers, forming a 
hierarchy of abstraction. Each layer provides a simplified interface to the layer above 
it, concealing the underlying complexities. 

○ Hardware (Lowest Layer): The physical machinery, directly manipulated by 
electrical signals. 

○ Firmware: Provides the most direct software control over hardware, essential 
for booting and basic device operations. 

○ Operating System Kernel: The core of the OS, running in a privileged 
kernel mode (or supervisor mode). In this mode, the OS has complete 
control over all hardware resources. It directly interacts with hardware drivers 
and manages the fundamental aspects of the system (CPU scheduling, 
memory management, I/O handling). 

○ System Libraries/APIs (Application Programming Interfaces): These 
provide a set of routines and protocols for building software applications. 
They act as an intermediary, offering convenient functions that, when called 
by an application, translate into requests for services from the OS kernel. 

○ Application Software (Highest Layer): Runs in user mode (or unprivileged 
mode). In user mode, applications are restricted from directly accessing 
hardware or critical OS structures. This protection mechanism prevents buggy 
or malicious applications from compromising the entire system. 
This layered architecture ensures system stability, security, and simplifies 
software development by providing higher-level, hardware-independent 
interfaces. 

● Role of System Calls: Interface between Application Programs and the Operating 
System/Hardware. 
Since application programs in user mode are restricted from directly manipulating 
hardware for reasons of security and system stability, they rely on system calls to 
request services that require privileged access or direct interaction with system 
resources. 

○ Mechanism: When an application needs to perform an operation that 
requires kernel privileges (e.g., reading data from a file on a disk, sending 
data over a network, creating a new process, allocating a large block of 
memory), it initiates a system call. This is essentially a special instruction that 
triggers a mode switch from user mode to kernel mode. 

○ Kernel's Role: The operating system kernel takes over control, verifies the 
application's request (for security and resource management), performs the 
requested privileged operation on behalf of the application, and then returns 
control and any results back to the application in user mode. 



○ Importance: System calls act as the sole, controlled gateway for user 
applications to interact with system hardware and core OS functionalities. 
This controlled access is fundamental to preventing system crashes due to 
application errors, enforcing security policies, and managing shared 
resources fairly among multiple running programs. 

1.4 Introduction to Performance Issues 

In computer architecture, performance is not a singular concept but a multifaceted 
characteristic crucial for a system's effectiveness and competitiveness. Evaluating and 
optimizing performance is an ongoing challenge that drives architectural innovation. 

● Defining Performance: Execution Time, Throughput, Response Time, Latency. 
To accurately assess how "fast" or "efficient" a computer system is, different metrics 
are employed depending on the context: 

○ Execution Time (or Wall-Clock Time): This is the simplest and most intuitive 
measure: the total time elapsed from the beginning of a task until its 
completion. It includes CPU execution, I/O waits, operating system overhead, 
and any other delays. For an individual user, this is often the most important 
metric (e.g., how long does it take for a program to load or a calculation to 
finish?). 

○ Throughput: This measures the amount of work completed per unit of time. 
It's often expressed as tasks per hour, transactions per second, or data 
processed per second. Throughput is critical for systems handling many 
simultaneous tasks, such as web servers or batch processing systems, where 
the goal is to maximize the total amount of work done. 

○ Response Time: This refers to the time it takes for a system to start 
responding to an input or request. It's the delay before the first sign of activity. 
For interactive applications, a low response time is crucial for a smooth user 
experience. 

○ Latency: Often used interchangeably with response time or execution time in 
specific contexts, latency specifically refers to the delay for a single operation 
or the time taken for a data packet or signal to travel from its source to its 
destination. For instance, memory latency is the time delay between a CPU 
requesting data and the data becoming available. 

● Factors Affecting Performance: Clock Speed, Instruction Count, CPI (Cycles Per 
Instruction). 
The total execution time (T) of a program is fundamentally determined by three 
interdependent factors: 

○ Clock Speed (Clock Rate / Frequency - C_freq): Modern CPUs operate 
synchronously with a master clock signal that dictates the pace of operations. 
The clock speed, measured in Hertz (Hz), Megahertz (MHz), or Gigahertz 
(GHz), represents how many clock cycles occur per second. A higher clock 
speed generally means more operations can be performed in a given time. 
The inverse of clock speed is the Clock Cycle Time (C_time), which is the 
duration of a single clock cycle. While historically a primary driver of 
performance, increasing clock speed has faced limitations due to power 



consumption ("power wall") and heat dissipation, and the challenge of getting 
data to the CPU fast enough ("memory wall"). 

○ Instruction Count (I): This is the total number of machine instructions that a 
program actually executes from start to finish. This count is influenced by: 

■ Algorithm Efficiency: A more efficient algorithm for a given task will 
naturally require fewer fundamental operations, and thus fewer 
instructions. 

■ Compiler Optimization: The quality of the compiler can significantly 
affect instruction count. An optimizing compiler can translate high-level 
code into more efficient (fewer) machine instructions. 

■ Instruction Set Architecture (ISA): Different ISAs have varying 
complexities. A Complex Instruction Set Computer (CISC) might 
achieve a task with fewer, more complex instructions, while a 
Reduced Instruction Set Computer (RISC) might require more, simpler 
instructions for the same task. 

○ Cycles Per Instruction (CPI): This is the average number of clock cycles 
required by the CPU to execute a single instruction. Ideally, CPI would be 1 
(one instruction completed every clock cycle), but in reality, it's often higher. 
Factors that increase CPI include: 

■ Pipeline Stalls: Delays in the CPU's internal pipeline due to data 
dependencies between instructions or structural conflicts. 

■ Cache Misses: When the CPU needs data or an instruction that is not 
present in its fast cache memory, it must fetch it from slower main 
memory, causing significant delays. 

■ Complex Instructions: Some instructions inherently take multiple 
clock cycles to complete (e.g., floating-point division). 

■ Memory Access Patterns: Inefficient memory access that doesn't 
leverage cache locality can increase average CPI. 
A lower CPI means the processor is doing more useful work in each 
clock cycle, indicating higher efficiency. 

● The Basic Performance Equation: The relationship between these three factors and 
the total execution time (T) is captured by the fundamental performance equation: 
T = I × CPI × C_time 
Where: 

○ T = Total Execution Time of the program (in seconds). 
○ I = Total Instruction Count (number of instructions executed). 
○ CPI = Average Cycles Per Instruction. 
○ C_time = Clock Cycle Time (in seconds per cycle, or 1/C_freq). 

● This equation is paramount because it provides a clear framework for performance 
analysis and optimization. To reduce the execution time (T) and improve 
performance, one must aim to reduce one or more of these factors: 

○ Reduce I (Instruction Count) through better algorithms or compiler 
optimizations. 

○ Reduce CPI (Cycles Per Instruction) through better architectural design (e.g., 
pipelining, better cache), or efficient code that minimizes stalls. 

○ Reduce C_time (Clock Cycle Time) by increasing the clock frequency 
(C_freq), though this faces physical limits. 



● For example, if a program executes 109 instructions, has an average CPI of 1.5, and 
runs on a processor with a 2 GHz clock (C_time = 0.5 ns), the execution time T 
would be: 
T=(109 instructions)×(1.5 cycles/instruction)×(0.5×10−9 seconds/cycle) 
T=0.75 seconds. 

● MIPS (Millions of Instructions Per Second) and MFLOPS (Millions of Floating-point 
Operations Per Second) as Performance Metrics: 
While the basic performance equation is foundational, simpler, more direct metrics 
are often used for quick comparisons, though they have limitations: 

○ MIPS (Millions of Instructions Per Second): This metric indicates how many 
millions of instructions a processor can execute in one second. It's calculated 
as: 
MIPS = (Clock Rate in MHz) / CPI 

■ Limitations: MIPS can be highly misleading. Not all instructions are 
equal: a single complex instruction on one architecture might do the 
work of several simpler instructions on another. Thus, a processor with 
a higher MIPS rating might not actually execute a given program 
faster if its instructions accomplish less work or its compiler isn't as 
effective. Comparing MIPS values across different Instruction Set 
Architectures (ISAs) is generally not meaningful. 

○ MFLOPS (Millions of Floating-point Operations Per Second): This metric 
specifically measures the number of millions of floating-point arithmetic 
operations (like additions, multiplications, divisions with fractional numbers) a 
processor can perform per second. It is particularly relevant for scientific 
computing, graphics processing, and other applications that involve intensive 
calculations with real numbers. 

■ Limitations: Similar to MIPS, MFLOPS can be deceptive because 
different floating-point operations take different amounts of time, and 
benchmarks use varying mixes of these operations. It also doesn't 
account for other crucial aspects of performance like memory access 
speeds or integer operations. 

● Benchmarking: Importance of Standardized Benchmarks for Performance 
Comparison. 
Given the shortcomings of simplistic metrics, benchmarking has become the industry 
standard for evaluating and comparing computer system performance. 

○ Concept: Benchmarks are standardized programs or suites of programs 
designed to represent typical or critical workloads. These programs are run 
on different computer systems, and their execution times (or other relevant 
metrics like throughput) are measured and compared. The goal is to provide a 
more realistic and fair assessment of performance than isolated metrics. 

○ Importance: 
■ Fair and Objective Comparison: Benchmarks provide a common, 

controlled workload, allowing for a more objective comparison 
between different processors, system configurations, or architectural 
designs, regardless of their underlying ISA or clock speed. 

■ Representative Workloads: Effective benchmarks are carefully 
chosen or designed to reflect real-world usage patterns. For instance, 
a benchmark for a server might simulate web traffic, while one for a 



gaming PC might simulate complex 3D rendering. This ensures that 
the measured performance is relevant to the intended application. 

■ Bottleneck Identification: By observing how a system performs on 
various benchmarks, designers and engineers can identify specific 
performance bottlenecks within the architecture (e.g., the CPU, 
memory subsystem, I/O bandwidth). This allows them to focus 
optimization efforts on the components that limit overall system 
performance the most. 

○ Example: The SPEC (Standard Performance Evaluation Corporation) 
benchmark suite is a widely recognized collection of benchmarks used to 
compare the performance of various computer systems across different 
application domains (e.g., SPEC CPU for general processor performance, 
SPECpower for energy efficiency). 

 


	Module 1: Introduction to Computer Systems and Performance 
	1.1 Basic Structure of Computers 
	1.2 Functional Units of a Computer 
	1.3 Software and Its Interaction with Hardware 
	1.4 Introduction to Performance Issues 


